
Freezing of dipole dynamics in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 as evidenced

by dielectric spectroscopy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 L541

(http://iopscience.iop.org/0953-8984/12/34/101)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) L541–L548. Printed in the UK PII: S0953-8984(00)15130-6

LETTER TO THE EDITOR

Freezing of dipole dynamics in relaxor ferroelectric
Pb(Mg1/3Nb2/3)O3–PbTiO3 as evidenced by dielectric
spectroscopy

A A Bokov and Z-G Ye†
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

E-mail: abokov@sfu.ca and zye@sfu.ca

Received 4 July 2000

Abstract. Complex dielectric susceptibility (χ ′+jχ ′′) has been studied at f = 10−2–105 Hz in the
relaxor ferroelectric 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3. In addition to the well known relaxor
dispersion observed at temperatures around and below the temperature of permittivity maximum
Tm, a new and comparatively weak dispersion has been disclosed at T > Tm. It is described by
the ‘universal relaxation law’, χ ′′ = cot(nπ/2)χ ′ ∝ f n−1. The temperature dependence of the
exponent n follows the Vogel–Fulcher relation, indicating a process of freezing into the nonergodic
state.

Relaxor ferroelectrics (or relaxors) are characterized by complex disordered crystal structure
and interesting macroscopic properties relevant to advanced applications [1, 2]. Intensive
fundamental investigations on relaxors have been stimulated by the discovery of a series of
phenomena, which cannot be explained in terms of the conventional ferroelectric concepts.
The temperature dependences of many properties, such as dielectric permittivity and lattice
parameters, usually do not show any sharp anomalies, which might point to a ferroelectric
phase transition. Furthermore, some of them strongly resemble the properties of orientational
or dipolar glasses. In particular, the frequency dependences of the temperature Tm, at which
the permittivity passes through a maximum, obeys the empirical Vogel–Fulcher law

f = f0 exp[−Ea/(Tm − TV F )] (1)

where f is the measurement frequency and f0, Ea and TV F are phenomenological parameters.
It is often believed, although without solid theoretical justification, that the relation (1) is the
indication of a freezing in the system at TV F [3, 4]. The freezing was supposed to be associated
with the transition into a nonergodic low-temperature glassy state due to random interactions
between reorienting dipolar moments [3]. However, the question is still open, and it is not clear
whether TV F is the freezing temperature or not. One possible alternative was discussed by
Tagantsev [5], who showed that the relationship (1) could be obtained as a direct consequence of
gradual broadening of the spectrum with decreasing temperature and did not necessarily imply
any kind of freezing. Bokov et al [6] studied the Vogel–Fulcher shift of Tm in Pb(In0.5Nb0.5)O3

in a frequency range wider than ever measured for relaxors, and found that at high frequencies
the relation (1) was fulfilled with the parameter TV F considerably different from the expected
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Figure 1. Temperature dependences of the real part of dielectric permittivity (ε′) of 0.75PMN–
0.25PT ceramics in the vicinity of ε′-maximum at different frequencies f = 100, 10, 1 kHz, 100,
10, 1, 0.1, 0.01 Hz (from upper curve). The broken line with triangles represents the calculated
static permittivity of the ‘conventional relaxor polarization’, ε∞. The dielectric susceptibility (χ ′)
associated with the ‘universal’ polarization mechanism, which is the difference between ε′ and ε∞,
is shown by arrows.

freezing temperature. On the other hand, the experimental evidence obtained from dielectric
measurements [7], neutron scattering [8] and NMR [9] supported the existence of a nonergodic
glassy state in relaxors.

To understand the cooperative behaviour in relaxors, it appears rewarding to study the
phenomena that are associated with many-body interactions between charges and/or dipoles.
One such phenomenon is the dielectric relaxation described by the so-called ‘universal
relaxation law’ [10, 11]. This law implies that both the real (χ ′) and imaginary (χ ′′) components
of complex dielectric susceptibility are given as

χ ′(f ) = ε′(f ) − ε∞ ∝ f n−1 (2)

χ ′′(f ) = ε′′(f ) ∝ f n−1 (3)

χ ′′(f )/χ ′(f ) = cot(nπ/2) (4)

where ε∞ is the high-frequency limit of real permittivity ε′ at which the low-frequency losses
described by equation (3) become negligible.

The objective of this work was to investigate the dielectric dispersion in the solid solution
system (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–PT) to provide a better understanding of
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the nature of relaxor properties. PMN–PT with low Ti concentration is known as a typical
relaxor [12, 13].

Pure perovskite PMN–PT ceramics with x = 0.25 were prepared by solid state reactions.
The dielectric permittivity was measured as a function of frequency at different temperatures
under isothermal conditions and a weak (0.05–0.2 V mm−1) ac field. A computer-controlled
impedance analyser (Solartron 1260) was used for measurements in conjunction with a
dielectric interface (Solartron 1296). All measurements were performed on samples freshly
annealed at 450 ◦C.

The temperature dependences of permittivity in the vicinity of the temperature of
maximum permittivity Tm(= 115–122 ◦C) show a typical relaxor behaviour (figure 1) with
a strong dispersion at T � Tm. At higher temperatures comparatively weak dispersion was
observed. This behaviour is qualitatively consistent with the results previously reported on
PMN–PT [12, 13]. As in the case of other relaxors, the Tm(f ) function can be fitted to the
Vogel–Fulcher law (1) with TV F = 109 ◦C, f0 = 9 × 1011 Hz and Ea = 200 K (0.0173 eV).

In relaxor ferroelectrics the dielectric dispersion in the high-temperature slope of
permittivity maximum (T > Tm) is known to be very weak in comparison with the relaxation
at T � Tm. Thus it was usually not considered as a meaningful property. We have found,
for the first time in relaxors, that at the temperatures above Tm the dielectric dispersion in
PMN–PT follows exactly the universal relaxation law (2)–(4) in a wide frequency range.

The frequency dependences (log-log plots) of the imaginary component of susceptibility
χ ′′ = ε′′ measured at several temperatures around and above Tm are shown in figure 2(a).
In a wide frequency range depending on temperature, the relations described by equation (3)
were observed with n smaller than but close to 1. At high temperatures and low frequencies
the exponent n changes and the universal behaviour with n = 0.2 can be observed. At
temperatures around Tm one can observe the increase of ε′′ with frequency in the high frequency
range, indicating one more relaxation process. Similar dispersion was usually observed in
other relaxors, therefore we call it the ‘conventional relaxor dispersion’. It moves to lower
frequencies with decreasing temperature.

To determine the real part of susceptibility χ ′ resulting from the polarization mechanism
responsible for the ‘universal’ relaxation, we used the customary procedure [10, 11]. By
subtracting the suitable values of ε∞ from ε′, we obtained at each temperature the χ ′(f )

dependences that are described by power law (2) with the same exponents n as for the χ ′′(f )

dependences (figure 2(b)). The low-frequency and conventional relaxor dispersions are also
clearly observable in the χ ′(f ) dependences as in the case of χ ′′(f ). An alternative way to
calculate χ ′(f ) is to use equation (4). The χ ′ values, calculated by these two methods, showed
a good agreement. The comparative results for the frequency 1 Hz are shown in figure 3.
This agreement testifies the validity of the universal law (2)–(4) for the observed dielectric
relaxation process.

To determine whether the universal dynamic response observed in PMNT75/25 is a true
bulk phenomenon, we have studied the dimensional effects. Samples with different electrode
areas (0.8 and 0.06 cm2) and different interelectrode distances (0.12 and 1 cm) were examined.
Very similar results were obtained in all cases, confirming the bulk universal relaxation
behaviour. To study the possible aging effects we performed the measurements under different
mean cooling rates (from 0.1 to 10 K h−1). No temporal change of n was observed.

It is found in figure 4 that when the temperature approaches Tm from T > Tm, the values
of the universal exponent n vary according to the Vogel–Fulcher law:

n = n0 exp[−N/(T − Tf )]. (5)

The best-fit values of n0, N and Tf are 0.909 ± 0.001, (0.37 ± 0.05) K and (113.1 ± 1.2) ◦C,
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Figure 2. Frequency dependences of the imaginary (a) and real (b) parts of dielectric susceptibility
at temperatures around and above Tm. Solid lines represent least-squares fitting to equations (2)
and (3).
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Figure 3. Real part of dielectric susceptibility (χ ′) associated with the ‘universal’ polarization
mechanism. The values of χ ′ were calculated at 1 Hz using equation (4) (dots) and equation (2)
(crosses) with the same exponents n which was determined from χ ′′(f ) plots using equation (3).

respectively.
The fulfillment of the relation (5) implies that the exponent n becomes zero at T = Tf .

To interpret this result it is useful to discuss the problem in terms of the time-domain response
of the system. The Fourier transform of the fractional power law (2) and (3) gives another
fractional power law, i(t) ∝ t−n, which describes the time dependence of the relaxation
current after a sudden removal of the polarizing field [10]. This time behaviour is known as
the Curie–von Schweidler law. The case of n = 0 corresponds to time-independent current.
As the steady state polarization of the system, P = ∫ ∞

0 i(t) dt , is finite, the discharge current
i must be zero in this case, thus P does not change with time. This indicates a freezing in the
system at Tf .

The frequency independent part of the permittivity ε∞ was found to follow the relation

1/ε∞ = A + B(T − TA)2 (6)

at all temperatures where the values of ε∞ can be measured (figure 5). The parameters A, B and
TA were determined by the least-squares fitting to be A = 2.03 × 10−5, B = 1.97 × 10−8 K−2

and TA = 110 ◦C, respectively.
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Figure 4. Temperature dependence of the universal relaxation exponent n. The solid line represents
the least-squares fitting to equation (5).

Therefore, the dielectric relaxation behaviour found in 0.75PMN–0.25PT ceramics at
temperatures around and above Tm suggests three relaxation processes associated with different
polarization mechanisms. The first one is found at extremely low frequencies. Such a low-
frequency dispersion was observed in many materials and is usually explained by the relaxation
of slowly mobile ionic and/or electronic charges [10, 11]. It has no relation to the ferroelectric
properties. The second polarization process can be described by the universal relaxation law
(2)–(4). It provides a comparatively small contribution χ ′ to the total permittivity ε′. The
temperature evolution of the dispersion associated with this process indicates a freezing of
dipole dynamics in the system at the Vogel–Fulcher temperature Tf . The third mechanism
is related to the conventional relaxor polarization. It provides the main contribution to the
extremely high permittivity in the vicinity of Tm, and is also responsible for the conventional
relaxor dispersion, which was observed in relaxors around and below Tm. The value of ε∞
calculated from equation (2) is the static permittivity of the conventional relaxor polarization.
Figure 1 illustrates the relation between ε′, ε∞ and χ ′.

The conventional relaxor dispersion contributes to the frequency shift of the temperature
Tm, which can be described by the Vogel–Fulcher law (1). At high frequencies where the
effect of ‘universal’ relaxation is comparatively small, the relaxor contribution is dominating.
However, the Vogel–Fulcher fitting of Tm does not necessarily mean any freezing at TV F . We
have demonstrated that at temperatures well above TA, ε∞ follows the relation (6). Thus a
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Figure 5. Reverse dielectric permittivity 1/ε∞ as a function of (T − TA)2 at T > TA. The solid
line represents the least-squares fitting to equation (6).

maximum of static permittivity related to the conventional relaxor polarization can naturally
be expected at temperatures close to TA. Such a maximum is implied in the phenomenological
approach relating the Vogel–Fulcher shift of temperature Tm to the wide and smooth spectrum
of relaxation times, which broadens with decreasing temperature without any freezing-related
singularity [5, 14]. According to this approach the Vogel–Fulcher temperature TV F should
coincide with TA. Our results on PMN–PT have confirmed this coincidence experimentally
with TV F = 109 ◦C and TA = 110 ◦C.

The conclusion about freezing has been drawn irrespective of any particular models of
relaxation. The possible microscopic mechanisms are discussed as follows.

According to the structural glass models [3, 9], the nonergodic glassy state appears as
a result of the freezing of thermally activated and reorientational dipolar moments of the
nanoclusters, which are known to exist in relaxors. The reorientation of dipoles and the
motion of the cluster interphase boundaries may contribute to the dielectric response of relaxor
ferroelectrics. Based on the above analysis, we suggest that the susceptibility χ ′ is related
to the reorientation of dipolar moments of the nanoclusters, while the conventional relaxor
polarization results predominantly from the vibration of polar cluster boundaries. A more
detailed discussion on these issues will be given elsewhere [15].

In conclusion we have suggested the following interpretations of the dielectric relaxation
in relaxor ferroelectrics. The Vogel–Fulcher behaviour of Tm associated with the conventional
relaxor dielectric dispersion seems to result from a specific distribution of relaxation times
(of the polar cluster boundaries), rather than from any freezing. On the other hand, the
polarization of polar clusters gives rise only to a comparatively small addition to the magnitude
of permittivity. It is this polarization that is related to the universal relaxation behaviour (2)–(4)
discovered in PMN–PT at T � Tm. At temperatures high enough, the interactions between
polar clusters are negligible. Upon cooling, the interactions become enhanced because of the
growing number and correlation length of polar clusters. Upon further cooling, the dipolar
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moments freeze at Tf as a result of the critical slowing-down of dipole dynamics. The freezing
manifests itself by the Vogel–Fulcher-type temperature dependence of the universal relaxation
exponent n, as described by equation (5). The final state below Tf can be a nonergodic glassy
one.

This work was supported by the US Office of Naval Research (grant No N00014-99-1-0738).
The authors thank Dr M Dong for his help in dielectric measurements.
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